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A NUMERICAL METHOD FOR DISCRETE ORDINATE 

AND MOMENT EQUATIONS IN RADIATIVE TRANSFER? 
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Abstract-A method is presented for the numerical solution of nonlinear, frequency-dependent radiative 
transfer problems with one-dimensional symmetry. The principal feature of the method is accuracy of the 
finite difference scheme in the limits of large and small cross sections. The method is illustrated in a 

number of sample calculations. 
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NOMENCLATURE K,, 

radiation constant 8x5k4/15c3h3; 

quadrature coefficient for integrals &3/47 
over angle ; 
quadrature coefficient for integrals WV, 0, 
over frequency ; 
velocity of light ; N, 
specific heat at constant volume; 
coefficients of Legendre polynomial P”(r, 0, 
of order N ; 
coefficients of angular derivative ; ph4 
material energy density ; 
radiation energy density; $, 

r component of energy flux density ; 
corresponding frequency-integra- 6 
ted quantities; T, 
Planck’s constant ; T*, 
monochromatic specific intensity of 

coefficients in Legendre polynomial 
expansion of K(p, p’) ; 
coefficients in the Lagrange inter- 
polating polynomial ; 
moments of the angular distribu- 
tion ; 
order of approximation in angular 
representations ; 
rr component of radiation pressure 
tensor ; 
Legendre polynomial of order 1; 
position coordinate ; 
scattering term in discrete ordinate 
equations ; 
time ; 
temperature ; 
first approximation to T”+*. 

radiation ; 
corresponding difference form ; 
frequency integrated intensity; 

ioF&ann constant (when used 
with T); 

maximum number of frequency 
intervals ; 
scattering kernel averaged over 
azimuth angle; 

Greek symbols 

2, 
geometry index ; 

small increment in position ; 

At, time increment ; 

Av;., volume of zone j ; 

:k, 

mean free path ; 
Rosseland mean free path; 

I4 direction cosine relative to r axis; 
!4, points of division in the p interval ; 

V, frequency of radiation ; 

PV mass density ; 

t This work performed under the auspices of the U.S. Oi, 
Atomic Energy Commission. 
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absorption cross section in units of 
(length)- l; 
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Subscripts 

0, 

J? 

j + 3, 
k, 1, 

k, 

1, 
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scattering cross section ; 
Planck mean absorption cross sec- 
tion ; 
coefficients in Legendre polynomial 
expansion of intensity. 

indicates a given reference value 
which is constant; 
refers to the space mesh position 
‘j = jAr; 
refers to the center of zone j; 
general summation indices in sec- 
tion 4; 
a frequency index in any difference 
equation ; 
an angular index in any difference 
equation. 

Superscripts 

V, 
n, 

frequency index ; 
refers to time t” = n At. 

In section 5 a numerical method for the 
moment equations is developed that is accurate 
for both large and small cross sections. An 
equivalent method for the discrete ordinate 
equations is given in section 6. The method is 
demonstrated with the solution of representative 
problems in section 7. 

1. INTRODUCTION 

THKS paper is concerned with a method for 
numerical computation of the radiative heating 
and cooling of material objects. The method is 
designed for problems in which the full transport 
equation is required [l]. These problems usually 
involve high temperatures or low densities, 
such as those encountered in nuclear explosions 
or the m-entry of space vehicles into the atmo- 
sphere. 

2. BASIC EQUATIONS 

A radiation field at any point is composed of 
components with different frequencies and con- 
sequently a wide range of absorption mean free 
path. The usual finite difference procedures for 
the transport equation [2, 31 are only accurate 
for space and time differences small compared 
to the mean free path. These methods are there- 
fore too restrictive to use in most frequency- 
dependent calculations. 

In the linear problem of radiative transfer, 
the emitting and absorbing properties of the 
material are given. In the nonlinear problem, 
these properties depend on the temperature and 
must be determined as part of the calculation. 
In this section the basic equations for the non- 
linear problem are given in both plane and 
spherical geometry, assuming local thermo- 
dynamic equilibrium and conservative scatter- 
ing. 

The transport equation is 

1 

= QV(T) + crs 1 K(cL, 14 W) Wv (2.1) 
-“1 

In order to solve a frequency-dependent where a = 0 for plane geometry and IX = 2 for 
problem efficiently, a single method is needed spherical geometry. The temperature at any 
that is accurate for a wide range of cross point in the material depends on the history of 
sections. One method of this type is based on energy exchange with the radiation field. When 

Monte Carlo techniques [4]. In the present 
paper, a finite difference method is developed 
that is accurate regardless of the size of the 
cross sections. This method is superior to the 
Monte Carlo in terms of accuracy and computer 
time for most problems with simple geometry. 

In section 2 a statement of the problem is 
given, and the general procedure for solving the 
basic equations is discussed. In section 3 the 
cross sections and the differencing of the 
frequency spectrum are described. 

In section 4 the discrete ordinate and moment 
representations of the angular distribution are 
given. These angular representations have been 
shown to he equivalent. 
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equation (2.1) is multiplied by 2~ and integrated 
over all p and v, the equation of energy conser- 
vation is obtained 

= - ME,. (2.2) 

In equation (2.2), E and F are the radiation 
energy and energy flux densities, and E,(T) is 
the thermal energy density in the material. The 
material energy density must be given as a 
function of temperature by the equation of 
state, 

E,,,(T) = pc,T. (2.3) 

In general the specific heat c, will depend on the 
temperature, but for the purposes of this paper 
it will be assumed constant. 

The nonlinear problem is described by the 
following set of basic equations : The transport 
equation (2.1) with the appropriate boundary 
conditions, the energy balance equations (2.2), 
the equation of state (2.3), and expressions for 
the cross sections and scattering kernel. 

In order to solve this set of coupled integro- 
differential equations, they will be approximated 
by a set of finite difference equations [S, 63 on a 
net of points covering the region in which the 
solution is required. There are no generally 
accepted rules by which to obtain the best 
difference equations for a numerical calculation. 
However, the following principle is a valuable 
guide : 

The most important properties of the basic 
equations should be built into the differencing 
scheme so that these properties are automatically 
present in the lowest order of approximation. 

The principle insures that the critical features 
of the basic equations are realized with any net 
spacing, and not just in the limit as the net 
spacing approaches zero. One such feature is 
energy conservation. In a nonlinear calculation 

where the equations of transport (2.1) and 
energy balance (2.2) are used together, their 
difference forms must be consistent. Another 
desirable feature is accuracy of the difference 
equations regardless of the size of the net spacing 
relative to the mean free path. 

3. FREQUENCY SPECTRUM 

Since the frequency appears only as a para- 
meter in equation (2.1), the frequency distribu- 
tion of P’(r, p, t) can be differenced independently 
of the other variables. This differencing will be 
determined by the form of the cross sections. 
Actual cross sections that include lines and 
absorption edges are quite complicated [7]. 
Such cases will be avoided here in order to 
concentrate on the problems of space-time and 
angular differencing. 

For the purpose of illustrating the numerical 
method, an absorption cross section of the form 

[l - exp (- hv/kT)] 

(3.1) 

is assumed, where the exponential term corrects 
for induced emission. The Thompson scattering 
kernel, 

W/.4 cl’) = &[(3 - P2) + (3P2 - I) Pf21, 

(3.2) 

will be used with as = const. 
Since the cross sections are simple, a uniform 

division of the frequency interval can be used, 

vk = kAv k = O,l,...,k,,, 

where k,,, is chosen large enough so that the 
radiant energy in all higher frequencies is 
negligible. Integrals over frequency are then 
obtained by 

km.,., 
r(rj, ~2, t”) = 1 -W,“(k k), 

k=O 

where A; are the quadrature coefficients for 
Simpson’s rule, and k,,,,, is an even integer. 
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4. MOMENT AND DISCRETE 
ORDINATE REPRESENTATIONS 

The angular distribution of the radiation 

plied by 27r,ukd~ and integrated, the following 
sequence of moment equations is obtained : 

field can be expressed approx~ately in three 
different representations : Legendre polynomial, 
angular moment, and discrete ordinate. The 
equivalence of these representations has been 
discussed in restricted cases by several authors. 
In Chapter 7 of Richtmyer [6], the equivalence 
between the discrete ordinate and Legendre 
polynomial equations is demonstrated for neut- 
ron transport in plane geometry. Chandrasekhar 
[S] states that his version of discrete ordinates 
in spherical geometry is equivalent to the 
Legendre pol~omial equations. Krook [9] has 
demonstrated the equivalence of all three 
representations for the Milne problem, i.e. 
steady state radiative transfer in plane geometry 
with isotropic scattering. 

-kM;-, 
1 

+ (0: + a,) MkY = 2~ 
[l + (-l)kl 

(k + ,)-cQ’(~) 

+ 2nl~,G;, k=0,1,2 ,.... (4.1) 

where G; is the scattering term. In any N - 1 
moment equations there are N unknowns. If 
the sequence is truncated by the relation 

(4.2) 

where the C,” are coefficients of the Legendre 
polynomial 

The equivalence of the three angular repre- 
sentations can also be shown for the nonlinear 
problem of radiative transfer with Thompson 
scattering in plane and spherical geometry. In 
the remainder of this section, the basic equations 
for radiative transfer in the moment and 
discrete ordinate representations are given, and 
in the following sections a finite difference 
method for the solution of these equations is 
developed. The difference scheme for the dis- 
crete ordinate equations is based on the equiva- 
lence between the angular representations. 

the moment representation will be equivalent 
to the Legendre polynomial representation. 

(b) Discrete ordinate representation 
In this representation, the p interval (- 1,l) 

is su~ivided by N points pr, where the points 
of division are the zeros of P&CL). The angular 
distribution is then given by a Lagrange inter- 
polating function 

(a) Angular moment representation 
In this representation the angular distribution 

of the radiation field is expressed in terms of its 
moments : 

(4.3) 

where Il(r, t) are the discrete ordinates, and the 
Lagrangian coefficients [ 1 l] are 

k=0,1,2 ,.... 

When the angular distribution is given by 
(4.3), the angular derivatives at each of the 
points of division are 

The moments determine the coefficients in a 
Taylor series expansion of the Fourier transform 
of I’@, p, t) [lo]. 

When the transport equation (2.1) is multi- (4.4) 
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and the integral of the intensity is given by the 
Gaussian quadrature formula 

j I’dp = f I; j L,(~“)dp s 2 AJ;. 
-1 k=l -1 k=l 

(4.5) 

The transport equation (2.1) for discrete ordi- 
nates becomes 

1 ar; ar; -- = 
c at PlT’T a!+;,,,&[; 

+ (CT:: + 03 1; = apqT) + a&, 
1= 1,2,...,N (4.6) 

where S; is the scattering term. 
In this representation, the angular moments 

are given in terms of the discrete ordinates by 

M; = 27~ $l 1; _j; L,(P) pk dp, 

k = 0, 1,2,. . . , N. 

When the Lagrange coefficients L,(p) are ex- 
pressed in terms of PN(p), the integral can be 
evaluated using the orthogonality property of 
the Legendre functions. The result is 

M; = 271 $ A&p:, 
I=1 

where the A, are the 

k=0,1,2 ,..., N 

(4.7) 

quadrature coefficients 
defined by (4.5). It should be emphasized that 
only for Gaussian quadrature are the moments 
given in terms of the discrete ordinates by (4.7). 

The expression (4.7) is fundamental to the 
equivalence of the difference schemes discussed 
in the two following sections. 

5. MOMENT EQUATIONS FOR LARGE 
AND SMALL CROSS SECTIONS 

The equations of the moment representation 
(4.1) are particularly well suited for transport 
calculations in the limits of large and small 
cross sections. These equations allow several 
levels of approximation that are not obtained 
in the usual treatment [l] of transport in 

optically thick and thin materials. When ex- 
pressed in terms of energy density, flux density, 
and radiation pressure, the first two moment 
equations become 

g + $ f (PF”) + c&Y = 47ca3P( T) 

(5.la) 

1 aF’ 

cat+” 
fg+Z(3Pv-Ev) 

+ (6: + a,) F’ = 0, (5.lb) 

where the energy balance equation is 

(5.lc) 

In the two approximations to be considered, P’ 
is determined by the geometry of the problem, 
and no higher moments need to be included. 

For those frequencies with very small cross 
section, 

and in most problems gS 4 0:. The last term in 
(5.lb) can therefore be neglected. The third term 
does not appear in plane geometry, and in 
spherical geometry it will be much smaller than 
the second term, except perhaps near the center. 

If the cross sections are small, the radiation 
field will be dominated by the external sources 
rather than by local emission from the material. 
Under these conditions, the radiation pressure 
is given by P’ N E’ (the relation for a plane or 
spherical wave), and the transport problem is 
described by theffee wave approximation : 

F + f ; (PF’) + co;E” = 43@?“(T), 

(5.2a) 

;g++o. (5.2b) 
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Note that when 01 = CT, = 0, the equations (5.2) 
reduce to the equations of wave propagation 
with velocity c in either plane or spherical 
geometry. 

For frequencies with moderately 
section, 

large cross 

and the local isotropic emission from the 
material will dominate the radiation field. For 
isotropic radiation P” = E”/3, and (5lb) re- 
duces to the relation for flux in a diffusing 
medium. The transport problem is then des- 
cribed by the nonequilibrium diffusion approxi- 
mation : 

$ + f $ (r”F”) + C(T$!Y = 47tcQY(T), 

(5.3a) 

F” z - $7: + &g. (5.3b) 

When the cross section is exceedingly large 
for all frequencies, the temperature distribution 
rapidly comes into equilibrium with the radia- 
tion field so that E” N (4n/c) B”(T) everywhere. 
In this case the frequency spectrum is deter- 
mined, thereby permitting the use of frequency- 
integrated equations in the equilibrium di#ikon 
approximation : 

E=:aT4,F= -.+;f (5.4a) 

E$f - Ej”++ (r”Ffizf - (r’F)y++ 

(5.4b) At - 
-^- 

r,g+ + Ar 

+ c&EJ+‘; + Eli’++) = 47ca;B’(T;,+f), 

(5.5a) 

equations, provided that P” is given. These two 
equations, therefore, hold most of the content 
of the transport process. The moment equations 
of all higher orders merely serve to determine 
P”. In most cases P” is approximated very well 
by P” = /3E”, where the Eddington factor b 
usually falls in the range 3 < /I Q 1. 

In constructing difference equations for (5. I), 
one must be careful to insure that the correct 
difference forms for the diffusion equation and 
wave equation result in the limits of large and 
small cross section. By the guiding principle 
adopted in section 2, this property must be 
directly built into the difference form of (5.1). A 
difference form of this kind is obtained if the 
energy density ET.+, and temperature Tj”++ are 
defined at zone centers, and the flux FJ is 
defined at zone boundaries as in Fig. 1. The 
difference form of (5.1) then becomes 

FIG. 1. A section of the space-time difference net, showing the 
points of definition for temperature, energy density, and 

energy flux density. 

where the Rosseland mean free path is defined by 

Note that both the free wave approximation 
and the nonequilibrium diffusion approxima- 
tion are contained in the first two moment 

p+’ J - F; P$f - Pg 
cAt + '!dvjtl -rj-1) 

+ z(3P;+f - E;++) 
J 

+ (CT; + a&oj”+ 1 + Fj”) = 0. (5.5b) 

In (5.5) the frequency index is suppressed for 
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convenience in notation, and any quantity 
defined at t”+* is given by T”“* = i( T”+ 1 + T”). 

Inspection of (5.5) shows that when the cross 
sections are large and Pv N E’/3, these equations 
reduce to the Crank-Nicholson difference form 
[12] of the diffusion equation. When the cross 
sections are small and P” = E’, the equations 
(5.5) reduce to the corresponding difference 
form of the wave equation [13]. 

The first two equations (5.la) and (5.lb) are 
fundamental to any calculation based on 
moments. There are several alternate ways of 
obtaining the second moment P”. One can 
consider any number of higher moment equa- 
tions, differenced as in (5.5). with an appropriate 
truncation formula; one can use for the second 
moment equation 

fZ + cg + 3(Ji + Gs)FY = 0, 

a form [14] which automatically gives the two 
asymptotic expressions (5.2b) and (5.3b); or 
one can calculate the Eddington factor /I 
approximately for different configurations on 
the basis of known analytic solutions [15]. 

The three approximations (5.2), (5.3), and 
(5.4) have been compared by Campbell and 
Nelson [16] with Monte Carlo transport solu- 
tions [4] for small, intermediate, and large cross 
sections. The expected accuracy of these 
approximations is confirmed. 

6. DISCRETE ORDINATE METHOD 
FOR COMBINED TRANSPORT AND 

RADIATION DIFFUSION 

In section 5 a difference method for the 
moment equations was given that automatically 
insures the correct transport properties for both 
large and small cross sections. Since the discrete 
ordinate and moment representations are con- 
sistent and equivalent in accuracy, it should be 
possible to find a space-time difference scheme 
for the discrete ordinate equations equivalent 
to (5.5). Such a difference scheme is presented 
here. It gives P’ to sufficient accuracy and also 
reduces to the diffusion and wave approxima- 

tions for large and small cross sections. In the 
interests of simplicity, the method is described 
for plane geometry only. 

The specific intensity is denoted by 

Z”“(rj, pFLe t”) 3 Z;(l, k), 

although some of the indices may not be written 
out explicitly. The calculation requires two sets 
of intensities, one set defined at the zone bound- 
aries, Z;, and the other at zone centers, I;++. 
The temperatures and mass densities are zone- 
centered. At each time step, all the quantities 
are given at t” and t”- ‘, and the calculation 
proceeds as follows : 

(a) Predicted intensities 
In order to start the calculation, provisional 

values of the intensity and temperature are 
needed at t”+l. These quantities are obtained 
by linear extrapolation. 

(b) Calculation of zone boundary intensities 
The zone boundary intensities at t”+’ are 

calculated from the following difference form of 
(4.6) : 

Z?+l J - z; 
+ Pl 

‘7:; + zj”++ - z;-‘f - zj”_+ 

cAt (rj+l - rj-1) 

+ (al"+ os)$(z;+l + 13) 

= a;Bvk(T;++) + cQjn+*, (6.1) 

where 

T:“” = +(I?+‘; + T;++ + Tjn_+; + T;_+), 

and the scattering term is evaluated in terms of 
predicted intensities, 

Sjn++ = 1 +[Z;+ ‘(lr, k) + Zj”(I’, k)] A,X(,ul, /+). 
I’ 

When the corrected intensities Zj”’ ’ are obtained 
from (6.1), the zone boundary fluxes are deter- 
mined by the quadrature formula 

Fjn++(v,J = 27~ 7 A1&[Z;+ ‘(I, k) + Z;(l, k)]. 

(6.2) 
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The form of (6.1) is such that the fluxes obey 
(5Sb) by virtue of (4.7). 

(c) Calculation of temperatures 
Knowledge of the boundary fluxes now 

permits the calculation of zone temperatures. 
The energy densities in each frequency group 
are obtained from 

E’!+ 1 
I++ - Ej”++ + F;+‘t - Fj”++ - 

At rj+l - ‘j 
+ c,;+fE~:; + E,?++) = 47~~2 B*(Tj*,$, 

(6.3) 

together with the Planck mean, 

at the approximate temperature 

Tj*,+ = $(T;,‘f + T,“,,). 

The temperatures can then be determined by 
the energy balance equation (5.1~) : 

p W)~++f - w3;+* 
c At 

(6.5) 

The temperature equation (6.5) is iterated to 
convergence using the Newton-Raphson 
Method ES], while holding the Planck mean 
constant at the approximate temperature T*. 
The procedure is then repeated from (6.3) using 
the improved temperatures until the successive 
values converge to one part in 104, usually 
within 2 or 3 iterations. 

(d) Ca~~~atian ofzone-centered intensities 
Knowledge of the temperatures and zone 

boundary intensities permits the calculation of 
zone-centered intensities from the following 
difference form of (4.6) : 

TTff = &T;:; + T;++), 

and the scattering term is evaluated in terms of 
predicted intensities, 

sgg = r, Q[r;:f(l’, k) + I;+& k)] 
1’ 

x 4, a,, Clr). 

With the intensities obtained from (6.6), the 
energy densities are given by the quadrature 
formula 

E;++;(Q) = : 7 A, I;:$, k). (6.7) 

These energy densities obey the difference form 
of (5.5a) by virtue of (4.7), and are therefore 
consistent with (6.3) which assures the con- 
servation of energy. 

The whole process can be repeated from (6. l), 
but it is usually more economical to reduce the 
time step Alt, if the calculation is not suffi~ently 
accurate. The stability condition for the method 
has been determined experimentally to be 

The numerical procedure is illustrated for a 
number of sample calculations in section 7. 

The accuracy of the method is investigated in 
the solution of the following radiative heating 
problem. A semi-infinite slab of uniform density 
and specific heat is exposed to an external 
black-body radiation field at temperature TO. 
The radiation and material energy densities are 
initially zero in the slab. The distributions of 
temperature and radiant energy are determined 
as a function of time. 

Constant cross sections are considered first in 
order to illustrate the method for very long and 
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very short mean free path and to check the 
procedure for handling the scattering integral. 
A fr~uency~e~ndent problem is then solved, 
and the results are compared with those of the 
Monte Carlo method. 

The calculations were coded in FORTRAN 
and performed on an IBM-7094. A typical 
execution of the discrete ordinate method 
requires 0.13 second per time step per frequency 
group. In all the ~lculations presented here, 
four Gaussian divisions of the angular interval 
were used, 

CLZ = + %l + l/J3), 

with a specific heat given by pc, = Oe5917 02. 

(a) Constant cross sections 
Temperatures calculated by the discrete ordi- 

nate method are shown in Fig. 2 for the case of 

o Discrete ordinate 

c1= 100 A 

f 
“p w- 
z - Equilibrium diffusion 

iz 
F 

0.2 - 

ni 
0 O-2 o-4 O-6 0% I.0 I.2 

Distance, r/x 

FIG. 2. Comparison of discrete ordinate and equilibrium 
diffusion calculations for large absorption cross section 
and no scattering. The discrete ordinate calculation was 

performed with c At = OQ5 1, AT = 0.1 L. 

a mean free path small compared to the distance 
scale A. These tem~ratures agree well with the 
similarity solution of the equilibrium diffusion 
equation given by Barfield et af. L17]. In Fig. 3 
the discrete ordinate temperatures are com- 
pared with those obtained by the Monte Carlo 
calculation [4] for a mean free path large 

008 4 Monte Carlo 
0 Discrete ordinate 

h” &=10X 

h‘ 0.06 LTO x=0.01 

5 
6 0.04 

& 

2 

I-" 
0.02 

0 

Distance, r/X 

FIG. 3. Comparison of discrete ordinate and Monte Carlo 
calculations for small absorption cross section and no 
scattering. The discrete ordinate calculation was performed 
with cAt = 0.5 %, Ar = 101, and the 4000 particle Monte 

Carlo calculation with E At = 10 1, Ar = 10 J_ 

A Monte Corlo 

o Discrete ordinate 

cf=20X 
L? 

h‘ 
@6 

0 I 2 3 4 5 

Distance, r/X 

FIG. 4. The effect of Thompson scattering on energy pene- 
tration for constant cross sections. The discrete ordinate 
calculation was performed with c At = 025 I, Ar = 0.5 I,, 
and the 4000 particle Monte Carlo calculation with 

c At = 0.5 1. and Ar = 0.5 1. 

compared to the scale parameter 1. It is clear 
from these results that the difference method 
performs well in both cases. 

In Fig. 4 the difference method is compared 
with Monte Carlo in a scattering eroblem. In 
the method presented in section 6, the scattering 
integral is evaluated in terms of extrapolated 
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A Monte Carlo 

0 Discrete ordinate 

I I 
0 20 40 60 80 

Distance, r/X, 

I I I / A 

0 20 40 60 

Distance, r/x, 

FIG. 5. Comparison of discrete ordinate and Monte Carlo methods for the frequency-dependent cross 
section 6, = o,,(h~/kT~)-~[l - exp (-hv/kT)] an no scattering. The discrete ordinate method was d 
performed with c Ar = 05 A,,, Ar = 2Q A,,, and frequency differences A&) = 0.5 kT, with k,,, = 20. 

The 4000 particle Monte Carlo calculation was performed with c At = I.0 A,,, Ar = 20 1,. 

intensities. Since the predicted and corrected 
intensities do not generally agree, energy will 
not be strictly conserved. However, in Fig. 4 the 
method shows good agreement with the Monte 
Carlo calculation and gives overall energy 
conservation to within ON per cent. 

(b) Frequency-dependent cross sections 
Figure 5 shows the results of a radiative 

heating calculation using the frequencydepend- 
ent cross section discussed in section 3. The 
distributions of temperature and frequency- 
integrated energy density are given for both the 
discrete ordinate and Monte Carlo calculations. 
The agreement is good, despite the statistical 
fluctuations of the Monte Carlo results. The 
difference calculation averaged 3 set per cycle 
on the IBM-7094. The Monte Carlo calculation 
averaged 8 set per cycle but used a time step 
double that of the difference method. 

8. CONCLUSION 

The results of the preceding section have 
shown that the finite difference method is 
generally superior to the Monte Carlo for the 

simple problems considered here. The difference 
method requires less computing time and is 
free of statistical error. However, there are 
several areas in radiative transfer in which 
Monte Carlo techniques are superior. One such 
area involves the treatment of complicated 
geometries. Another is the nonconservative 
(Compton) scattering of radiation by hot elec- 
trons : a problem that occurs when the transport 
material is almost completely ionized. 

It is apparent that each method has its own 
special advantages. Also, it frequently happens 
in numerical computation that one has little 
idea of the accuracy of his calculations. Under 
these conditions it is convenient to have two 
basically different methods with which to check 
the results. 

Two aspects of the numerical computation 
that have not been considered in this paper are 
discontinuities in the angular distribution and 
spherical geometry. Both of these problems 
merely add to the complexity of the calculation 
and require no major alterations in the pro- 
cedure. 

A more important omission is the treatment 
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of cross sections with a complex structure of Alamos Scientific Laboratory Rep. No. AECD-I870 

lines and absorption edges. This problem in- (1948).t 

creases in difIIculty as more detail in the 
8. S. CHANJXASEKHAR, Radiative Transfer, p. 366. Dover 

frequency spectrum is required. Cross sections 
Publications, New York (1960). 

9. M. KROOK, On the solution of equations of transfer, 

with edges and a few of the most prominent Astrophys. J. 122,488 (1955). 

absorption lines are not too difficult to handle. 
10. C. KITTEL, Elementary Statisticat Physics, p. 118. John 

Several calculations of this kind have been done 
Wiley, New York (1958). 

11. W. MILNE, Numerical Calculus, Article 24. Princeton 

with the discrete ordinate method and will be University Press, Princeton, N.J. (1949). 

described in a forthcoming publication. 
12. R. RICHTMYER, ibid., p. 93, 
13. R. RICHTMYER, Ibid., p. 169. 
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R&nm&-On prtsente une methode de solution numetique des problknes non-lineaires du transport 
par rayonnement dependant de la frequence et a symttrie unidimensionnelle. La caracteristique principale 
de la methode est la precision du schema de differences times darts les cas limites des grandes et des petites 

sections droites. La mtthode est illustree par de nombreux calculs d’exemples. 

Zuaanunenfasaung-Es wird eine Methode zur L&rung nichtlinearer, frequenzabhlngiger Strahlungs- 
probleme mit eindimensionaler Symmetrie angegeben. Das Hauptmerkmal der Methode ist die Genauig- 
keit des endlichen Differenzenschemas in den Grenzen von grossen und kleinen Querschnitten. Die 

Methode wird durch eine Reihe von Rechen~ispielen veranschaulicht. 

kUIOTiLqH~-npeACTaBJIeH MeTog 9kicneHHoro pememx Henmietfrinx, 3amfcR~sfx OT 

9aCTOThI, sagas JIyWCTOrO nepewoca c OAHOMepHOi CmMeTpHeK OCHOBHO~ OCO6eIiHOCTbIO 

MeTOga RBJlReTCR TO'iHOCTb CXeMbX KOHeUHbIX pa3HOCTet B IlpeEeJIaX 6onburax Ei MaJlbIX 

~0~epeqH~x cereawk MeTog ~~~~CTp~pyeTc~ Ha pszfie ~p~MepoB* 


