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Abstract—A method is presented for the numerical solution of nonlinear, frequency-dependent radiative
transfer problems with one-dimensional symmetry. The principal feature of the method is accuracy of the
finite difference scheme in the limits of large and small cross sections. The method is illustrated in a
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NOMENCLATURE
radiation constant 8n°k*/15¢c3h3;
quadrature coefficient for integrals
over angle;
quadrature coefficient for integrals
over frequency;
velocity of light;
specific heat at constant volume;
coefficients of Legendre polynomial
of order N;
coefficients of angular derivative;
material energy density;
radiation energy density;
r component of energy flux density;
corresponding frequency-integra-
ted quantities;
Planck’s constant ;
monochromatic specific intensity of
radiation;
corresponding difference form;
frequency integrated intensity;
-1;
ﬁ/oltzmann constant (when used
with T);
maximum number of frequency
intervals;
scattering kernel averaged over
azimuth angle;

+ This work performed under the auspices of the U.S.
Atomic Energy Commission.

K, coefficients in Legendre polynomial
expansion of K(u, ');

L¥(u),  coefficients in the Lagrange inter-
polating polynomial,;

Mi(r,t), moments of the angular distribu-
tion;

N, order of approximation in angular
representations;

P¥(r,t), rrcomponent of radiation pressure
tensor;

Py(u), Legendre polynomial of order /;

r, position coordinate ;

S, scattering term in discrete ordinate
equations;

t, time;;

T, temperature;

T*, first approximation to T"**,

Greek symbols

a, geometry index ;

Ar, small increment in position ;

At, time increment;

AV, volume of zone j;

A, mean free path;

Az Rosseland mean free path;

I, direction cosine relative to r axis;

s points of division in the u interval ;

v, frequency of radiation ;

o, mass density;

o), absorption cross section in units of
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(length)~*;
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O scattering cross section;

Gp Planck mean absorption cross sec-
tion;

Yi(r,t), coefficients in Legendre polynomial
expansion of intensity.

Subscripts

0, indicates a given reference value
which is constant;

IA refers to the space mesh position
ri=JjAr;

j+3 refers to the center of zone j;

k1 general summation indices in sec--
tion 4;

k, a frequency index in any difference
equation;

I an angular index in any difference
equation.

Superscripts
v, frequency index;
n, refers to time t" = nAt.

1. INTRODUCTION

THis paper is concerned with a method for
numerical computation of the radiative heating
and cooling of material objects. The method is
designed for problems in which the full transport
equation is required [ 1]. These problems usually
involve high temperatures or low densities,
such as those encountered in nuclear explosions
or the re-entry of space vehicles into the atmo-
sphere.

A radiation field at any point is composed of
components with different frequencies and con-
sequently a wide range of absorption mean free
path. The usual finite difference procedures for
the transport equation [2, 3] are only accurate
for space and time differences small compared
to the mean free path. These methods are there-
fore too restrictive to use in most frequency-
dependent calculations.

In order to solve a frequency-dependent
probiem efficiently, a single method is needed
that is accurate for a wide range of cross
sections. One method of this type is based on
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Monte Carlo techniques [4]. In the present
paper, a finite difference method is developed
that is accurate regardless of the size of the
cross sections. This method is superior to the
Monte Carlo in terms of accuracy and computer
time for most problems with simple geometry.

In section 2 a statement of the problem is
given, and the general procedure for solving the
basic equations is discussed. In section 3 the
cross sections and the differencing of the
frequency spectrum are described.

In section 4 the discrete ordinate and moment
representations of the angular distribution are
given. These angular representations have been
shown to be equivalent.

In section 5 a numerical method for the
moment equations is developed that is accurate
for both large and small cross sections. An
equivalent method for the discrete ordinate
equations is given in section 6. The method is
demonstrated with the solution of representative
problems in section 7.

2. BASIC EQUATIONS

In the linear problem of radiative transfer,
the emitting and absorbing properties of the
material are given. In the nonlinear problem,
these properties depend on the temperature and
must be determined as part of the calculation.
In this section the basic equations for the non-
linear problem are given in both plane and
spherical geometry, assuming local thermo-
dynamic equilibrium and conservative scatter-

ing.
The transport equation is
101" o a(l —pu?al

—+ (o) + ) I’

car T HFa Tt i

1
= 6,B'(T) + o, J K(u, )y P(yde’,  (2.1)
-1
where o = 0 for plane geometry and « = 2 for
spherical geometry. The temperature at any

point in the material depends on the history of
energy exchange with the radiation field. When
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equation (2.1) is multiplied by 2z and integrated
over all x and v, the equation of energy conser-
vation is obtained

E 10, .. [ .[4n. ;
Et—ﬂ-FarF)—j\CO'al:?B(T)—E]dv
0
——EE(T) (2.2)
oa '

In equation (2.2), E and F are the radiation
energy and energy flux densities, and E,(T) is
the thermal energy density in the material. The
material energy density must be given as a
function of temperature by the equation of
state,

E/T) = pc,T. (2.3)

In general the specific heat ¢, will depend on the
temperature, but for the purposes of this paper
it will be assumed constant.

The nonlinear problem is described by the
following set of basic equations: The transport
equation (2.1) with the appropriate boundary
conditions, the energy balance equations (2.2),
the equation of state (2.3), and expressions for
the cross sections and scattering kernel.

In order to solve this set of coupled integro-
differential equations, they will be approximated
by a set of finite difference equations [5, 6] on a
net of points covering the region in which the
solution is required. There are no generally
accepted rules by which to obtain the best
difference equations for a numerical calculation.
However, the following principle is a valuable
guide:

The most important properties of the basic
equations should be built into the differencing
scheme so that these properties are automatically
present in the lowest order of approximation.

The principle insures that the critical features
of the basic equations are realized with any net
spacing, and not just in the limit as the net
spacing approaches zero. One such feature is
energy conservation. In a nonlinear calculation

where the equations of transport (2.1) and
energy balance (2.2) are used together, their
difference forms must be consistent. Another
desirable feature is accuracy of the difference
equations regardless of the size of the net spacing
relative to the mean free path.

3. FREQUENCY SPECTRUM

Since the frequency appears only as a para-
meter in equation (2.1), the frequency distribu-
tion of I'(r, p, t) can be differenced independently
of the other variables. This differencing will be
determined by the form of the cross sections.
Actual cross sections that include lines and
absorption edges are quite complicated [7].
Such cases will be avoided here in order to
concentrate on the problems of space-time and
angular differencing.

For the purpose of illustrating the numerical
method, an absorption cross section of the form

e \73
v _ — hv/
6l = g, (—kT(,) [1 — exp(—hv/kT)]
(3.1

is assumed, where the exponential term corrects
for induced emission. The Thompson scattering
kernel,

K, 1) = 5[ — 1) + 3 — ) p'?],
3.2)
will be used with ¢, = const.

Since the cross sections are simple, a uniform
division of the frequency interval can be used,

v = kAv k=0,1,...,k

where k., is chosen large enough so that the
radiant energy in all higher frequencies is
negligible. Integrals over frequency are then
obtained by

krnnx
lry ) = 35 ALK

where A, are the quadrature coefficients for
Simpson’s rule, and k,,,, is an even integer.



4. MOMENT AND DISCRETE
ORDINATE REPRESENTATIONS

The angular distribution of the radiation
field can be expressed approximately in three
different representations : Legendre polynomial,
angular moment, and discrete ordinate. The
equivalence of these representations has been
discussed in restricted cases by several authors.
In Chapter 7 of Richtmyer [6], the equivalence
between the discrete ordinate and Legendre
polynomial equations is demonstrated for neut-
ron transport in plane geometry. Chandrasekhar
[8] states that his version of discrete ordinates
in spherical geometry is equivalent to the
Legendre polynomial equations. Krook [9] has
demonstrated the equivalence of all three
representations for the Milne problem, ie.
steady state radiative transfer in plane geometry
with isotropic scattering,

The equivalence of the three angular repre-
sentations can also be shown for the nonlinear
problem of radiative transfer with Thompson
scattering in plane and spherical geometry. In
the remainder of this section, the basic equations
for radiative transfer in the moment and
discrete ordinate representations are given, and
in the following sections a finite difference
method for the solution of these equations is
developed. The difference scheme for the dis-
crete ordinate equations is based on the equiva-
lence between the angular representations.

(a) Angular moment representation

In this representation the angular distribution
of the radiation field is expressed in terms of its
moments:

i
Mir,t)=2n | I’(r, 1) dp,
-1

k=0,1,2,....

The moments determine the coefficients in a
Taylor series expansion of the Fourier transform
of I'(r, u, 1) [10].

When the transport equation (2.1) is multi-
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plied by 2zu* du and integrated, the following
sequence of moment equations is obtained :

1My oMy, «o ’ N
Py ar +§; k+2) My, — kM,
1 _ 1y
+ (o) +0)M;="2n [__'*'_(__J_)_J_ ag.B(T)

k+1

+ 2n0,G, k=0,1,2,....(41)

where Gy is the scattering term. In any N — 1
moment equations there are N unknowns. If
the sequence is truncated by the relation
N
Y CiM; =0, 4.2
k=0

where the C} are coefficients of the Legendre
polynomial

N
Py = Y. Cl,

the moment representation will be equivalent
to the Legendre polynomial representation.

(b) Discrete ordinate representation

In this representation, the u interval (—1,1)
is subdivided by N points g, where the points
of division are the zeros of Py(u). The angular
distribution is then given by a Lagrange inter-
polating function

N
I t) = ZI Liwnr,y, @43

where I}(r, t) are the discrete ordinates, and the
Lagrangian coefficients [11] are

Py{y) F_&v.] -t
(0 — )| du

When the angular distribution is given by
(4.3), the angular derivatives at each of the

points of division are
N
.2- D 1Lk I zs

ory ENZ I dL, ()
_é; By B g dnu =y
4.4)

LY(w) =

[l 3

k=1 k=1
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and the integral of the intensity is given by the
Gaussian quadrature formula

1 N 1 N
fPdu= 3 Iy | Lwdp= Y Al
21 k=1 =1 k=1

.5)

The transport equation (2.1) for discrete ordi-
nates becomes

tory _ oy a(l—ud)

—_— =y — D, I}
c ot “lar 2 r ;"“

+ (o) + o) I} = 6}BYT) + 0.5},
1=12...,N

(4.6)

where S; is the scattering term.
In this representation, the angular moments
are given in terms of the discrete ordinates by

N 1
M; =2n IZI Ly _Ile(#)u"du,
k=0,1,2...,N.

When the Lagrange coefficients L(u) are ex-
pressed in terms of Py(u), the integral can be
evaluated using the orthogonality property of
the Legendre functions. The result is

N
M;=2rn) ALy, k=012....N
=1
4.7

where the A, are the quadrature coefficients
defined by (4.5). It should be emphasized that
only for Gaussian quadrature are the moments
given in terms of the discrete ordinates by (4.7).

The expression (4.7) is fundamental to the
equivalence of the difference schemes discussed
in the two following sections.

5. MOMENT EQUATIONS FOR LARGE
AND SMALL CROSS SECTIONS
The equations of the moment representation
(4.1) are particularly well suited for transport
calculations in the limits of large and small
cross sections. These equations allow several
levels of approximation that are not obtained
in the usual treatment [1] of transport in

optically thick and thin materials. When ex-
pressed in terms of energy density, flux density,
and radiation pressure, the first two moment
equations become

0E* 10 v gy vRY
5 +F5(rF)+ca“E = 4no BY(T)
(5.1a)
10FY oP* ac v
+ () +0)F* =0, (51b)

where the energy balance equation is

—a—E,,,(T) = Sca; [E“ — 4—ﬂ:B"(T):I dv.
ot c
0

(5.1¢c)

In the two approximations to be considered, P¥
is determined by the geometry of the problem,
and no higher moments need to be included.

For those frequencies with very small cross
section,

laF”
c Ot

and in most problems g, < ¢. The last term in
(5.1b) can therefore be neglected. The third term
does not appear in plane geometry, and in
spherical geometry it will be much smaller than
the second term, except perhaps near the center.
If the cross sections are small, the radiation
field will be dominated by the external sources
rather than by local emission from the material.
Under these conditions, the radiation pressure
is given by P’ =~ E” (the relation for a plane or
spherical wave), and the transport problem is
described by the free wave approximation :

> |o F"

oEY + i 0 (rF") YEY — 4n6"BUT
at r* ar r + Caa - naa ( ),
(5.2a)
10FY JEY
S+ =o0 (5.2b)
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Note that when ¢, = o, = 0, the equations (5.2)
reduce to the equations of wave propagation
with velocity ¢ in either plane or spherical
geometry.

For frequencies with moderately large cross
section,

i@F”
¢ Ot

and the local isotropic emission from the
material will dominate the radiation field. For
isotropic radiation P* = EY/3, and (5.1b) re-
duces to the relation for flux in a diffusing
medium. The transport problem is then des-
cribed by the nonequilibrium diffusion approxi-
mation:

<

a;F”{,

aEv 1 a a2V YEV YRV
—5;+F5;(TF)+CO',,E = 4no BY(T),
{5.3a)
Vo f v -1 OE
FY x> 3 (o) + oy Foe (5.3b)

When the cross section is exceedingly large
for all frequencies, the temperature distribution
rapidly comes into equilibrium with the radia-
tion field so that E” ~ {4n/c) BYT) everywhere,
In this case the frequency spectrum is deter-
mined, thereby permitting the use of frequency-
integrated equations in the equilibrium diffusion
approximation:

_opap_ _C7 9E

E =aT* F = 3ZR6r (5.4a)
0E, 6E 10 =
o T tEmth=0 (54b)

where the Rosseland mean free path is defined by

oD

[forvor o] 2]
p— [g(a“ + 6y 3T dv T dvj .
o

0

Note that both the free wave approximation
and the nonequilibrium diffusion approxima-
tion are contained in the first two moment
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equations, provided that P" is given. These two
equations, therefore, hold most of the content
of the transport process. The moment equations
of all higher orders merely serve to determine
P*. In most cases P’ is approximated very well
by P = BE*, where the Eddington factor j
usually falls in the range § < f < 1.

In constructing difference equations for (5.1},
one must be careful to insure that the correct
difference forms for the diffusion equation and
wave equation result in the limits of large and
small cross section. By the guiding principle
adopted in section 2, this property must be
directly built into the difference form of (5.1). A
difference form of this kind is obtained if the
energy density E}, , and temperature T}, are
defined at zone centers, and the flux F7 is
defined at zone boundaries as in Fig. 1. The
difference form of (5.1) then becomes

% — * pat
% *
X H— % #"
fi=i 7y Tji+1 Ti+2
X Ejeds Tie &
[ ] .
£

FI1G. 1. A section of the space-time difference net, showing the
points of definition for temperature, energy density, and
energy flux density.

Bl - Ely  (°P)if - (°F)t

At iy Ar
+ coHE L + Ejsy) = 4nayBATIY),
{5.5a)
P -F P - P
cAt Hrjvs —1i-1)
7
X aprty _ gt
+ 2r1-( 4 i)
+ (o) + o)} F}P P+ F)=0.  (55b)

In (5.5) the frequency index is suppressed for
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convenience in notation, and any quantity
definedatt"**isgivenby T"*¥ = {(T"*! + T™).

Inspection of (5.5) shows that when the cross
sections are large and P ~ E"/3, these equations
reduce to the Crank-Nicholson difference form
[12] of the diffusion equation. When the cross
sections are small and P* ~ E, the equations
(5.5) reduce to the corresponding difference
form of the wave equation [13].

The first two equations (5.1a) and (5.1b) are
fundamental to any calculation based on
moments. There are several alternate ways of
obtaining the second moment P*. One can
consider any number of higher moment equa-
tions, differenced as in (5.5). with an appropriate
truncation formula; one can use for the second
moment equation

%aait + C%E;- + 30, + o) F' =0,
a form [14] which automatically gives the two
asymptotic expressions (5.2b) and (5.3b); or
one can calculate the Eddington factor
approximately for different configurations on
the basis of known analytic solutions [15].

The three approximations (5.2), (5.3), and
(5.4) have been compared by Campbell and
Nelson [16] with Monte Carlo transport solu-
tions [4] for small, intermediate, and large cross
sections. The expected accuracy of these
approximations is confirmed.

6. DISCRETE ORDINATE METHOD
FOR COMBINED TRANSPORT AND
RADIATION DIFFUSION

In section 5 a difference method for the
moment equations was given that automatically
insures the correct transport properties for both
large and small cross sections. Since the discrete
ordinate and moment representations are con-
sistent and equivalent in accuracy, it should be
possible to find a space-time difference scheme
for the discrete ordinate equations equivalent
to (5.5). Such a difference scheme is presented
here. It gives P" to sufficient accuracy and also
reduces to the diffusion and wave approxima-

tions for large and small cross sections. In the
interests of simplicity, the method is described
for plane geometry only.

The specific intensity is denoted by

IVk(rﬁ H t”) = 17(1, k)’

although some of the indices may not be written
out explicitly. The calculation requires two sets
of intensities, one set defined at the zone bound-
aries, I}, and the other at zone centers, [7, ;.
The temperatures and mass densities are zone-
centered. At each time step, all the quantities
are given at t" and t"~ !, and the calculation
proceeds as follows:

(@) Predicted intensities

In order to start the calculation, provisional
values of the intensity and temperature are
needed at "', These quantities are obtained
by linear extrapolation.

(b) Calculation of zone boundary intensities
The zone boundary intensities at "*' are
calculated from the following difference form of
(4.6):
A I R e 1o
+
cAt (rjv1 —rj-1)
+ (@ e )M+ I
= o;B"(T} %) + 6573,

n
Ii-4

6.1)
where
T?** = %(Tji; + Tiiy + T;ff; + T3-),

and the scattering term is evaluated in terms of
predicted intensities,

S?H‘t = 3, k) + I, k)] A K(u, ).

T

When the corrected intensities I7* ! are obtained

from (6.1), the zone boundary fluxes are deter-
mined by the quadrature formula

F;+4}(vk) =2r ; Alﬂl%[1;+l(l, k) + I;’(l, k)]
(6.2)
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The form of {6.1) is such that the fluxes obey
(5.5b) by virtue of (4.7).

(¢) Calculation of temperatures

Knowledge of the boundary fluxes now
permits the calculation of zone temperatures.
The energy densities in each frequency group
are obtained from

Bl =B, | Pt - B
At r1+1 - r
+ coP}HETL} + Ejyy) = dno B(T%,,),
6.3)

together with the Planck mean,

G(Thy) = (T,Hr“}:A' o2 BMTY, )

6.4)
at the approximate temperature
Tty = AT5i% + The)

The temperatures can then be determined by
the energy balance equation (5.1¢):

{c,T ;‘i; - (CvT)g-x»;,
cAt

L Ao EST 30 +
%

E}, *(Vk)]

- 5P(Tf+§) a[%(T;i; + T”+4})]4 (6.5)

The temperature equation (6.5) is iterated to
convergence using the Newton—Raphson
Method [5], while holding the Planck mean
constant at the approximate temperature T%*.
The procedure is then repeated from (6.3) using
the improved temperatures until the successive
values converge to one part in 104 usually
within 2 or 3 iterations.

(d) Calculation of zone-centered intensities

Knowledge of the temperatures and zone
boundary intensities permits the calculation of
zone-centered intensities from the following
difference form of (4.6):
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BB, OH+ 0 =0 =
c At ! Aripy =1y
+ (@ + o I I; + I:h})
= o BXTIIH) + 0, S}

(6.6)
where
T3t = HTjii + They)

and the scattering term is evaluated in terms of
predicted intensities,

S5i3 = DAL + 130 0]

x Ay K(u, py)-

With the intensities obtained from (6.6), the
energy densities are given by the quadrature
formula

oW =TT AL 6)
These energy densities obey the difference form
of (5.5a) by virtue of (4.7), and are therefore
consistent with (6.3) which assures the con-
servation of energy.

The whole process can be repeated from (6.1),
but it is usually more economical to reduce the
time step At, if the calculation is not sufficiently
accurate. The stability condition for the method
has been determined experimentally to be

cAt < 3 A

The numerical procedure is illustrated for a
number of sample calculations in section 7.

7. SAMPLE CALCULATIONS

The accuracy of the method is investigated in
the solution of the following radiative heating
problem. A semi-infinite slab of uniform density
and specific heat is exposed to an external
black-body radiation field at temperature T,
The radiation and material energy densities are
initially zero in the slab. The distributions of
temperature and radiant energy are determined
as a function of time.

Constant cross sections are considered first in
order to illustrate the method for very long and
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very short mean free path and to check the
procedure for handling the scattering integral.
A frequency-dependent problem is then solved,
and the results are compared with those of the
Monte Carlo method.

The calculations were coded in FORTRAN
and performed on an IBM-7094. A typical
execution of the discrete ordinate method
requires 0-15 second per time step per frequency
group. In all the calculations presented here,
four Gaussian divisions of the angular interval
were used,

=t Al +1//3),
with a specific heat given by pc, = 0-5917 aT3,
{a) Constant cross sections

Temperatures calculated by the discrete ordi-
nate method are shown in Fig. 2 for the case of

10
O Discrete ordinate
o8- ¢#=100 X
oo A=100
kO
N o6
g
2
g %"~ Equilibrium diffusion
[~}
§
’..
o2p-
I i ] I ol
0 o2 o4 o6 o8 0 -2

Distance, r/X

F1G6. 2. Comparison of discrete ordinate and equilibrium

diffusion calculations for large absorption cross section

and no scattering. The discrete ordinate calculation was
performed with ¢ At = 0054, Ar = 0-1 A

a mean free path small compared to the distance
scale A. These temperatures agree well with the
similarity solution of the equilibrium diffusion
equation given by Barfield et al. {17]. In Fig. 3
the discrete ordinate temperatures are com-
pared with those obtained by the Monte Carlo
calculation [4] for a mean free path large

505
008 4 Monte Cario
© Discrete ordinate
W2 er=i0 X
R oos oo X200l
s
3
S 004
©
i= %
£
¥ ooz
‘\
| i | A gy |
o) 2 4 6 8 10
Distance, r/a

F1G. 3. Comparison of discrete ordinate and Monte Carlo
calculations for small absorption cross section and no
scattering. The discrete ordinate calculation was performed
with cAt = 0:5 4, Ar = 104, and the 4000 particle Monte
Carlo calculation with c At = 104, Ar = 104

4 Monte Carlo
o Discrete ordinate

,(4
£
v
o

Q@
@®
T

N ¢t =20 X
l:o \ ‘o\ o, A=l
~ AN
o6 \ %
\
\
]

o, =0,

Temperature,
Qo
H
T

Q
r
I

B~ s
° ] 2 3 4 5 s
Distance, r/Xx
Fi1G. 4. The effect of Thompson scattering on energy pene-
tration for constant cross sections. The discrete ordinate
calculation was performed with ¢ At = 0251, Ar = 0:5 4,
and the 4000 particle Monte Carlo calculation with
cAt =054and Ar =05 A

compared to the scale parameter A. It is clear
from these results that the difference method
performs well in both cases.

In Fig. 4 the difference method is compared
with Monte Carlo in a scattering problem. In
the method presented in section 6, the scattering
integral is evaluated in terms of extrapolated
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-0 [H¢]

A Monte Carlo
O Discrete ordinate

L gel

ogl-4 Cf=200)\0 E o8k
LY}
W )
~ S
~ =
o6 2
¢ 3
2 &
g g
8 | H
€ 04 c
7] o
[ =
8
Q
o
©

02
g,
Ao.0:6_0
! ! L 4
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Distance, 7/X, Distance, r/Ag

F1G. 5. Comparison of discrete ordinate and Monte Carlo methods for the frequency-dependent cross

section o, = ao(hv/kTy)~3[1 — exp (—hv/kT)] and no scattering. The discrete ordinate method was

performed with c At = 0-5 4y, Ar = 20 4,, and frequency differences A(hv) = 0-5 kT, with k.. = 20.
The 4000 particle Monte Carlo calculation was performed with ¢ At = 1-0 4y, Ar = 20 4,

intensities. Since the predicted and corrected
intensities do not generally agree, energy will
not be strictly conserved. However, in Fig. 4 the
method shows good agreement with the Monte
Carlo calculation and gives overall energy
conservation to within 0-01 per cent.

(b) Frequency-dependent cross sections

Figure 5 shows the results of a radiative
heating calculation using the frequency-depend-
ent cross section discussed in section 3. The
distributions of temperature and frequency-
integrated energy density are given for both the
discrete ordinate and Monte Carlo calculations.
The agreement is good, despite the statistical
fluctuations of the Monte Carlo results. The
difference calculation averaged 3 sec per cycle
on the IBM-7094. The Monte Carlo calculation
averaged 8 sec per cycle but used a time step
double that of the difference method.

8. CONCLUSION
The results of the preceding section have
shown that the finite difference method is
generally superior {0 the Monte Carlo for the

simple problems considered here. The difference
method requires less computing time and is
free of statistical error. However, there are
several areas in radiative transfer in which
Monte Carlo techniques are superior. One such
area involves the treatment of complicated
geometries. Another is the nonconservative
(Compton) scattering of radiation by hot elec-
trons : a problem that occurs when the transport
material is almost completely ionized.

It is apparent that each method has its own
special advantages. Also, it frequently happens
in numerical computation that one has little
idea of the accuracy of his calculations. Under
these conditions it is convenient to have two
basically different methods with which to check
the results.

Two aspects of the numerical computation
that have not been considered in this paper are
discontinuities in the angular distribution and
spherical geometry. Both of these problems
merely add to the complexity of the calculation
and require no major alterations in the pro-
cedure.

A more important omission is the treatment
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of cross sections with a complex structure of
lines and absorption edges. This problem in-
creases in difficulty as more detail in the
frequency spectrum is required. Cross sections
with edges and a few of the most prominent
absorption lines are not too difficult to handle.
Several calculations of this kind have been done
with the discrete ordinate method and will be
described in a forthcoming publication.
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Résumé—On présente une méthode de solution numérique des problémes non-linéaires du transport

par rayonnement dépendant de la fréquence et & symétrie unidimensionnelle. La caractéristique principale

de la méthode est la précision du schéma de différences finies dans les cas limites des grandes et des petites
sections droites. La méthode est illustrée par de nombreux calculs d’exemples.

Zusammenfassung—Es wird eine Methode zur Losung nichtlinearer, frequenzabhdngiger Strahlungs-

probleme mit eindimensionaler Symmetrie angegeben. Das Hauptmerkmal der Methode ist die Genauig-

keit des endlichen Differenzenschemas in den Grenzen von grossen und kleinen Querschnitten. Die
Methode wird durch ¢ine Reihe von Rechenbeispielen veranschaulicht.

Annoranua—IIpefcTaBien METON YMCIEHHOI'0 pelIeHHS HeJInHeWHHX,

3aBUCHIIUX OT

YaCTOTH, 3aJa4 JYYHCTOrO HEpPEeHoca ¢ OflHOMepHoM cuMMerpuelt. OCHOBHON O0COGEHHOCTBHIO
MeTOZa ABJAETCA TOYHOCTh CXeMMW KOHEYHHX pasHOocTedl B mpefenax GOJNBIIMX H MAJHX
[ONepedHNX cedeHult. MeToq MILIOCTPUPYETCA Ha PAJE NPHMEPOB.



